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a b s t r a c t

Influenza is an economically important respiratory disease affecting swine world-wide with potential
zoonotic implications. Genetic reassortment and drift has resulted in genetically and antigenically dis-
tinct swine influenza viruses (SIVs). Consequently, prevention of SIV infection is challenging due to the
increased rate of genetic change and a potential lack of cross-protection between vaccine strains and cir-
culating novel isolates. This report describes a vaccine-heterologous challenge model in which pigs were
administered an inactivated H1N2 vaccine with a human-like (!-cluster) H1 six and three weeks before
challenge with H1 homosubtypic, heterologous 2009 pandemic H1N1. At necropsy, macroscopic and
microscopic pneumonia scores were significantly higher in the vaccinated and challenged (Vx/Ch) group
compared to non-vaccinated and challenged (NVx/Ch) pigs. The Vx/Ch group also demonstrated enhanced
clinical disease and a significantly elevated pro-inflammatory cytokine profile in bronchoalveolar lavage
fluid compared to the NVx/Ch group. In contrast, viral shedding and replication were significantly higher
in NVx/Ch pigs although all challenged pigs, including Vx/Ch pigs, were shedding virus in nasal secretions.
Hemagglutination inhibition (HI) and serum neutralizing (SN) antibodies were detected to the priming
antigen in the Vx/Ch pigs but no measurable cross-reacting HI or SN antibodies were detected to pan-
demic H1N1 (pH1N1). Overall, these results suggest that inactivated SIV vaccines may potentiate clinical
signs, inflammation and pneumonia following challenge with divergent homosubtypic viruses that do
not share cross-reacting HI or SN antibodies.

Published by Elsevier Ltd.

1. Introduction

Swine influenza is caused by influenza A virus of the Orthomyx-
oviridae family and the cause of an acute respiratory disease in
swine. Orthomyxoviruses have a negative-sense, segmented RNA
genome that allows for genetic reassortment and generation of
novel viruses. Currently, three major influenza subtypes, H1N1,
H3N2 and H1N2, co-circulate in the major swine producing regions
of the United States (US) and Canada [1–4]. However, two addi-
tional subtypes, H3N1 and H2N3, have been identified in North
American swine, and drift variants of the predominant subtypes
are increasingly more common [4–11]. The increased rate of genetic
change in North American swine influenza virus (SIV) H1 subtypes
is attributed to the introduction of the human–avian–swine triple
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reassortant H3N2 subtype in 1998 and more importantly, to the
acquisition of the triple reassortant internal gene (TRIG) cassette
[10,12]. SIV subtypes include different combinations of the HA
and neuraminidase (NA) genes, however, the TRIG cassette, which
includes the NP, M, and NS, genes of classical swine lineage, PB2 and
PA genes of avian lineage, and PB1 of human lineage, have been con-
sistently identified among contemporary isolates circulating in the
North American swine population [2]. The TRIG appears to have
an enhanced ability to acquire a variety of surface glycoprotein
gene segments generating novel isolates such as the H2N3 subtype
identified in 2006, when the TRIG was shown to have acquired an
avian H2 and N3, producing a novel triple reassortant SIV [10,13].
Antigenic drift resulted in the evolution of three distinct H1 phylo-
genetic clusters (", #, and $) from the classical swine lineage. The
!-cluster emerged in 2005 in the US and includes SIVs with the
HA gene of human seasonal virus origin [10]. The hu-like H1 (!)
influenza viruses introduced a fourth cluster currently endemic in
US swine [10,14].

0264-410X/$ – see front matter. Published by Elsevier Ltd.
doi:10.1016/j.vaccine.2011.01.082

dx.doi.org/10.1016/j.vaccine.2011.01.082
http://www.sciencedirect.com/science/journal/0264410X
http://www.elsevier.com/locate/vaccine
mailto:amy.vincent@ars.usda.gov
dx.doi.org/10.1016/j.vaccine.2011.01.082


P.C. Gauger et al. / Vaccine 29 (2011) 2712–2719 2713

Table 1
Experimental design.

Group Vaccine Challenge N Weeks of age

Priming vaccine Booster vaccine Challenge

Vx/Cha MN08 pH1N1 10 4 7 10
NVx/Chb None pH1N1 10 4 7 10
NVx/NChc None None 5 4 7 10

a Vx/Ch: vaccinated/challenged.
b NVx/Ch: non-vaccinated/challenged.
c NVx/NCh: non-vaccinated/non-challenged.

Inactivated influenza A vaccines are approved for use in US
swine in pigs 3 weeks of age or older and have played a significant
role in preventing clinical disease [15,16]. However, inactivated
vaccines have shown limited efficacy or cross-protective immu-
nity against heterologous homosubtypic or heterosubtypic viruses
[15,17–19]. Consequently, use of autogenous vaccines specific to
the farm of origin has also increased in an attempt to control dis-
ease in the face of the escalating diversity within North American
influenza A viruses [3]. In contrast, exposure to live H1N1 and H3N2
virus has demonstrated complete protection against an SIV with
an unrelated HA protein in some studies, suggesting live exposure
results in improved cross-protection between heterologous SIVs
[20]. Collectively, genetically and antigenically diverse SIVs have
made prevention more challenging due to the increasing lack of
cross-protection among heterologous viruses and the inability to
update vaccines as rapidly as viruses change [3].

A potential problem with vaccination was demonstrated when
enhanced pneumonia in a subset of pigs administered an inacti-
vated H1N1 vaccine followed by challenge with a heterologous
virus was reported [19]. The viruses in that study were shown to
have no cross-reactivity either as anti-sera or antigen in the hemag-
glutination inhibition (HI) assay. The inactivated "-cluster swine
H1N1 vaccine failed to protect against challenge with a heterol-
ogous $-cluster H1N2 SIV and resulted in enhanced pneumonic
lesions in one-third of the pigs [19], and in all similarly treated pigs
in a subsequent study [21]. In the study described here, pigs were
administered an inactivated 2008 H1N2 hu-like !-cluster SIV vac-
cine followed by challenge with 2009 pandemic H1N1 (pH1N1).
We report the inactivated vaccine did not protect against chal-
lenge with pH1N1 virus. Furthermore, pigs in the vaccinated and
challenged group (Vx/Ch) demonstrated enhanced macroscopic
and microscopic pneumonia as well as an elevated inflammatory
cytokine profile suggesting vaccination potentiated the clinical dis-
ease and pneumonia in the Vx/Ch group followed by heterologous
challenge with pH1N1.

2. Materials and methods

2.1. Experimental design

Twenty-five, three-week-old cross-bred pigs were obtained
from a herd free of SIV and porcine reproductive and respira-
tory syndrome virus (PRRSV) and treated with ceftiofur crystalline
free acid (Pfizer Animal Health, New York, NY) and enrofloxacin
injectable solution (Bayer Animal Health, Shawnee Mission, KS)
according to label directions to reduce bacterial contaminants prior
to the start of the study. Pigs were housed in biosafety level 2
(BSL2) containment during the vaccine phase of the study. Pigs
were transferred to ABSL3 containment on the day of challenge
for the remainder of the experiment. Pigs were cared for in com-
pliance with the Institutional Animal Care and Use Committee of
the National Animal Disease Center. The experimental design is
described in Table 1.

SIV vaccine was prepared with A/Sw/MN/02011/08 H1N2
(MN08) at approximately 32 HA units and inactivated by ultra-
violet irradiation with the addition of a commercial oil-in-water
adjuvant (Emulsigen D, MVP Labs) at a v:v ratio of 4:1 virus
to adjuvant. Pigs were vaccinated with 2 ml by the intramus-
cular route at approximately 4 weeks of age and boosted at 7
weeks of age (Table 1). Pigs challenged at 10 weeks of age were
inoculated intratracheally with 2 ml of 1 × 105 50% tissue culture
infectious dose (TCID50) of A/CA/04/09 pH1N1 (pH1N1) propa-
gated in Madin–Darby canine kidney (MDCK) cells, as previously
described [14]. Pigs were observed daily for signs of clinical dis-
ease. Rectal temperatures were taken on −1, 0, 1, 2, 3, 4, and 5
days post-infection (dpi). Nasal swabs (Fisherbrand Dacron swabs,
Fisher Scientific, Pittsburg, PA) were taken on 0, 3, and 5 dpi to eval-
uate nasal virus shedding by dipping the swab in minimal essential
medium (MEM) and inserting the swab approximately 2.5 cm into
each nares. Swabs were then placed into 2 ml MEM and stored
at −80 ◦C until study completion. Pigs were humanely euthanized
with a lethal dose of pentobarbital (Sleepaway, Fort Dodge Ani-
mal Health, Fort Dodge, IA) on 5 dpi to evaluate lung lesions and
viral load in the lungs. Postmortem samples included serum, bron-
choalveolar lavage, lung and trachea.

2.2. Pathologic examination of lungs

At necropsy, lungs were removed and evaluated for the per-
centage of the lung affected with purple-red consolidation typical
of SIV. The percent of the surface affected with pneumonia was
visually estimated for each lung lobe, and then a total percentage
for the entire lung was calculated based on weighted proportions
of each lobe to the total lung volume [22]. Tissue samples from
the trachea and right cardiac lung lobe were taken and fixed in
10% buffered formalin for histopathologic examination. Tissues
were routinely processed and stained with hematoxylin and eosin.
Lung sections were given a score from 0 to 3 and tracheal sec-
tions were given a score from 0 to 2.5 to reflect the severity
of bronchial and tracheal epithelial changes based on previously
described methods [9]. The lung sections were scored according
to the following criteria: 0.0: no significant lesions; 1.0: a few
airways affected with bronchiolar epithelial damage and light peri-
bronchiolar lymphocytic cuffing often accompanied by mild focal
interstitial pneumonia; 1.5: more than a few airways affected (up
to 25%) often with mild focal interstitial pneumonia; 2.0: 26–50%
airways affected often with moderate interstitial pneumonia; 2.5:
approximately 51–75% airways affected, usually with significant
interstitial pneumonia; 3.0: greater than 75% airways affected, usu-
ally with significant interstitial pneumonia. Trachea sections were
scored according to the following criteria: 0.0: normal; 1.0: focal
squamous metaplasia of the epithelial layer; 2.0: diffuse squamous
metaplasia of much of the epithelial layer, cilia are focally evident;
2.5: diffuse squamous metaplasia with an absence of cilia. A sin-
gle pathologist scored all slides and was blinded to the treatment
groups.
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2.3. Diagnostic microbiology

All pigs were screened for influenza A nucleoprotein antibody
by ELISA (MultiS ELISA, IDEXX, Westbrook, Maine) prior to the start
of the study to ensure absence of prior immunity. Bronchoalveolar
lavage fluid (BALF) samples from 5 dpi were screened for aerobic
bacterial growth on blood agar and Casmin (NAD enriched) plates.
Diagnostic PCR for PCV2 [23] Mycoplasma hyopneumoniae [24] and
an in-house RT-PCR for PRRSV were conducted on nucleic acid
extracts from BALF.

2.4. Viral replication and shedding

Nasal swab samples were subsequently thawed and vortexed
for 15 s, centrifuged for 10 min at 640 × g and the supernatant was
passed through 0.45 %m filters to reduce bacterial contaminants.
Ten-fold serial dilutions in serum-free MEM supplemented with
TPCK trypsin and antibiotics were made with each BALF sample
and nasal swab filtrate sample. Each dilution was plated in trip-
licate in 100 %l volumes onto PBS-washed confluent MDCK cells
in 96-well plates. Plates were evaluated for CPE between 48 and
72 h post-infection. At 48 h, plates were fixed with 4% phosphate-
buffered formalin and stained using immunocytochemistry with an
anti-influenza A nucleoprotein monoclonal antibody as previously
described [16]. A TCID50 titer was calculated for each sample using
the method of Reed and Muench [25].

2.5. Antibody detection assays

For use in the HI assay, sera were heat inactivated at 56 ◦C
for 30 min, then treated to remove nonspecific hemagglutinin
inhibitors and natural serum agglutinins by treatment with a 20%
suspension of kaolin (Sigma–Aldrich, St. Louis, MO) and adsorp-
tion with 0.5% turkey red blood cells (RBCs). The HI assays were
then performed with MN08 and pH1N1 viruses as antigens and
turkey RBCs using standard techniques [26]. Reciprocal titers were
divided by 10 and log2 transformed, analyzed, and reported as the
geometric mean. Enzyme-linked immunosorbent assays (ELISAs) to
detect total IgG and IgA antibodies against whole virus preparations
of MN08 and pH1N1 present in serum and BALF were performed
as previously described [19,27] with modifications. Concentrated
MN08 or pH1N1 virus was resuspended in Tris–EDTA basic buffer,
pH 7.8, and diluted to an HA concentration of 100 HA units/50 %l.
Immulon-2HB 96-well plates (Dynex, Chantilly, VA) were coated
with 100 %l of antigen solution and incubated at room temper-
ature overnight. Serum and BALF were diluted in PBS and MEM,
respectively followed by 2-fold serial dilutions. The assays were
performed on each sample in duplicate. The mean of duplicate wells
was calculated and antibody titers were designated as the highest
dilution with an OD greater than 2 standard deviations above the
mean of the NVx/NCh controls. Log2 transformations of IgG recip-
rocal titers were analyzed and reported as geometric means. IgA
reciprocal titers were divided by 32 to establish a scale before log2
transformation and analysis. IgA titers were reported as geometric
means.

For the serum neutralization assay, sera were heat inactivated
at 56 ◦C for 30 min, then two-fold serially diluted from 1:10 to
1:20,480 in 96-well plates, using 50 %l serum diluted in serum-free
MEM supplemented with TPCK trypsin and antibiotics. Fifty micro-
liters of SIV diluted to 103.3 TCID50/ml was added to each dilution
and incubated at 37 ◦C for 1 h. Post-incubation, 100 %l of the serum
and virus mixture was added to each well of confluent MDCK cells
prepared in 96-well plates 48 h in advance and washed twice in
sterile PBS. Plates were incubated for 48 h or until the presence
of cytopathic effect (CPE). Presence of influenza virus was verified
by immunocytochemistry for all plates, and titers were recorded

as the highest dilution negative for virus or CPE. Reciprocal titers
were divided by 10 and log2 transformed, analyzed, and reported
as the geometric mean.

2.6. Cytokine assays

A 5 ml aliquot of BALF was centrifuged at 400 × g for 15 min
at 4 ◦C to pellet cellular debris. The cell-free BALF was stored at
−80 ◦C until assayed for cytokine levels. Levels of IL-8, IL-1# and
IL-6 in BALF were determined by ELISA performed according to
the manufacturer’s recommendations (DuoSet ELISA, R&D Systems,
Minneapolis, MN). Levels of IFN-" were determined by ELISA as
previously described [28].

2.7. Statistical analysis

Macroscopic pneumonia scores, microscopic pneumonia scores,
log10 transformed BALF and nasal swab virus titers, and log2
transformations of HI reciprocal titers, ELISA reciprocal titers and
cytokine data were analyzed using analysis of variance (ANOVA)
with a P-value ≤ 0.05 considered significant (JMP, SAS Institute,
Cary, NC; GraphPad Prism Version 5.00, San Diego, CA). Response
variables shown to have a significant effect by treatment group
were subjected to pair-wise comparisons using the Tukey–Kramer
test. Rectal temperature data were analyzed using a mixed lin-
ear model for repeated measures using SAS 9.1 for Windows (SAS
Institute, Cary, NC, USA). Linear combinations of the least squares
means estimates were used in a priori contrasts after testing for a
significant (P < 0.05) treatment group effect of vaccination status.
Comparisons were made between each group at each time-point
using a 5% level of significance (P < 0.05) to assess statistical differ-
ences.

3. Results

3.1. Clinical disease

All pigs inoculated with pH1N1 developed clinical signs that
included mild to moderate lethargy and inappetence. Some Vx/Ch
pigs demonstrated coughing with an increased respiration rate and
elevated respiratory effort whereas NVx/Ch pigs did not. Challenge
with pH1N1 virus induced a significant (P ≤ 0.05) febrile response
in Vx/Ch and NVx/Ch groups at 1 dpi (Table 2). The initial febrile
response in the NVx/Ch group began to subside by 2 dpi and was not
different from NVx/NCh controls by 3 dpi. However, challenged pigs
that were previously vaccinated with MN08 virus (Vx/Ch group)
exhibited a sustained febrile response that was significantly higher
than all other treatment groups from 48 through 96 h post infection.

3.2. Viral and microbiological assays

All pigs were free of influenza A virus antibodies prior to the start
of the experiment. No extraneous viral or M. hyopneumoniae nucleic
acids were detected in BALF collected at 5 dpi from any pigs. Routine
aerobic bacterial cultures of BALF isolated Bordetella bronchiseptica
from 3 Vx/Ch, 6 NVx/Ch and 2 NVx/NCh pigs.

3.3. Macroscopic and microscopic pneumonia scores

Pigs challenged with pH1N1 had purple-red colored cranioven-
tral lung consolidation typical of influenza virus infection. The
extent of lung consolidation ranged from 10.3% to 34.5% in Vx/Ch
pigs and 3.9% to 13.4% in the NVx/Ch pigs. NVx/NCh lung consol-
idation scores ranged from 0% to 2.3%. Vx/Ch pigs that received
the MN08 inactivated vaccine had significantly (P ≤ 0.0001) greater
percentages of pneumonia in the cranioventral and dorsocaudal



P.C. Gauger et al. / Vaccine 29 (2011) 2712–2719 2715

Table 2
Mean rectal temperatures.

Group Vaccine virus Challenge virus Rectal temperature (◦C)*

1 dpi 2 dpi 3 dpi 4 dpi 5 dpi

Vx/Ch MN08 pH1N1 40.5a 40.1a 40.2a 39.9a 39.5a

NVx/Ch None pH1N1 40.4a 39.6a 39.3b 39.4b 39.2a

NVx/NCh None None 38.7b 38.4b 39.1b 39.3b 39.2a

* Values within a column not connected by the same letter are significantly different (P ≤ 0.05).

Table 3
Mean macroscopic and microscopic pneumonia scores ± standard error of the mean (SEM) and mean TCID50 log10 virus titers ± SEM in lung and nasal secretions*.

Group Macroscopic pneumonia (%) Microscopic pneumonia (0–3) Log10 virus titers

BALF NS 3 dpi NS 5 dpi

Vx/Ch 20.5 ± 2.8a 2.5 ± 0.3a 2.1 ± 0.5a 1.4 ± 0.2a 1.7 ± 0.1a

NVx/Ch 8.9 ± 0.9b 1.7 ± 0.2b 3.4 ± 0.1b 1.1 ± 0.4ab 2.5 ± 0.2b

NVx/NCh 0.5 ± 0.5c 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0b 0.0 ± 0.0c

* Values within a column not connected by the same letter are significantly different (P ≤ 0.05).

lung compared to the NVx/Ch pigs that had lesions primarily
in the cranial and middle lung lobes (Fig. 1). Macroscopic lung
lesions also included localized hemorrhagic, bullous emphysema
in two pigs with enhanced pneumonia (figure not shown). Both
challenge groups had significantly higher (P ≤ 0.0001) pneumonia
scores compared to the NVx/NCh pigs (Table 3).

Microscopic lesions of pneumonia were not observed in the
NVx/NCh pigs; the scattered dark foci noted grossly in these

Fig. 1. Macroscopic lung lesions representing pigs in each challenge group. (A) Pigs
in the Vx/Ch group had a greater percentage of lung involvement compared to the
(B) NVx/Ch group.

pigs were atelectatic, unaffected lobules. All pigs challenged with
pH1N1 demonstrated lung lesions consistent with SIV infection,
and both inoculated groups had significantly greater (P ≤ 0.0001)
microscopic lesion scores compared to the NVx/NCh group.
However, Vx/Ch pigs had significantly (P ≤ 0.05) higher average
microscopic lesion scores compared to NVx/Ch pigs (Table 3).
Vx/Ch pigs also demonstrated more severe histopathological
lesions than typically observed with uncomplicated SIV infection.
These included severe necrotizing or proliferative bronchioli-
tis, prominent peribronchiolar lymphocytic cuffing and moderate
lymphohistiocytic interstitial pneumonia (Fig. 2A). In addition,
increased lymphocyte infiltration of the bronchiolar submucosa
and suppurative bronchitis and bronchiolitis were observed in the
Vx/Ch pigs (Fig. 3). NVx/Ch pigs that did not receive prior vaccina-
tion had moderate necrotizing bronchiolitis, subtle peribronchiolar
lymphocytic cuffing and mild interstitial pneumonia. Microscopic
tracheal lesion scores were also significantly (P ≤ 0.05) higher in the
Vx/Ch pigs compared to the NVx/Ch group and included epithelial
attenuation and necrosis, regional loss of cilia and marked submu-
cosal lymphocytic inflammation.

3.4. Virus levels in lung and nasal secretions

Virus was not detected in NVx/NCh pigs at anytime throughout
the study. Viral replication was detected in the lungs of all NVx/Ch
pigs and in 8 of 10 Vx/Ch pigs at 5 dpi. Mean BALF log10 TCID50 virus
titers in the lung were significantly higher (P ≤ 0.05) in the NVx/Ch
pigs compared to Vx/Ch pigs (Table 3). Virus was not detected in
nasal swabs from any group at 0 dpi. Nasal shedding was detected in
9 of 10 Vx/Ch pigs and in 5 of 10 NVx/Ch pigs at 3 dpi. At 5 dpi, 10 of
10 pigs in each challenge group had virus isolated from nasal secre-
tions. No statistically significant difference was noted between the
Vx/Ch and NVx/Ch pigs in virus titers in nasal secretions at 3 dpi
although the mean log10 TCID50 nasal swab titer was slightly higher
in the Vx/Ch pigs. In contrast, the mean log10 TCID50 nasal swab titer
at 5 dpi in the NVx/Ch pigs was significantly higher (P ≤ 0.001) than
the Vx/Ch pigs in spite of the same number of pigs shedding virus.

3.5. Hemagglutination-inhibition and serum neutralization tests

Pigs in the NVx/NCh group remained seronegative throughout
the study period. HI antibody titers in sera were observed only in
MN08 vaccinated pigs prior to SIV challenge (0 dpi). No MN08 HI
antibodies were detected at 0 dpi in the NVx/Ch group and no cross-
reacting HI antibody response to the pH1N1 virus was detected in
either the Vx/Ch or NVx/Ch group at 0 dpi. In addition, there was
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Fig. 2. Microscopic lung lesions representing pigs in each challenge group. (A) Vx/Ch
pigs with enhanced pneumonia demonstrated necrotizing to proliferative bronchi-
olitis and marked peribronchiolar lymphocytic cuffing compared to (B) NVx/Ch pigs
(200×).

no change in the level of MN08 HI antibodies in vaccinated pigs at
5 dpi compared to 0 dpi. HI and SN antibody titers are summarized
in Table 4.

Serum neutralization titers against MN08 virus were only
observed in the Vx/Ch pigs (Table 4). The geometric mean recipro-
cal titer was 2743.7 in the Vx/Ch group at 0 dpi and ranged between
640 and 10,240. In addition, serum neutralization titers against
the pH1N1 virus were not observed in either the Vx/Ch or NVx/Ch
groups at 0 dpi.

3.6. IgG and IgA antibody response to whole virus MN08 and
pH1N1

Pigs vaccinated with MN08 and challenged with pH1N1 virus
(Vx/Ch group) had anti-MN08 and cross-reacting anti-pH1N1 IgG in
BALF. However, NVx/Ch pigs did not develop detectable anti-MN08
or anti-pH1N1 IgG antibodies in BALF that were different than the
NVx/NCh group. Minimal anti-MN08 IgA antibody was detected

Fig. 3. Microscopic lung lesions demonstrated in Vx/Ch pigs with enhanced pneu-
monia includes subepithelial lymphocytic inflammation (arrow) and suppurative
bronchiolitis (arrowheads) (400×).

in BALF in the Vx/Ch pigs that were not detected in the NVx/Ch
pigs. However, the anti-pH1N1 IgA antibody response detected in
the Vx/Ch pigs was not significantly different than the NVx/Ch or
NVx/NCh pigs. Geometric mean IgG and IgA antibody titers are
reported in Table 5.

Cross-reacting anti-MN08 and anti-pH1N1 IgG antibody
responses were detected in serum of Vx/Ch pigs at 0 dpi. Pigs in the

Table 4
Hemagglutination inhibition and serum neutralization geometric mean reciprocal titers ± standard error of the mean (SEM).

Group HI titers 0 dpi SN titers 0 dpi

MN08 pH1N1 MN08 pH1N1

Vx/Ch 149.3 ± 12.7 0.0 ± 0.0 2743.7 ± 12.7 0.0 ± 0.0
NVx/Ch 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
NVx/NCh 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
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Table 5
Isotype specific serum (0 dpi) and bronchoalveolar lavage fluid (5 dpi) geometric mean reciprocal antibody titers ± standard error of the mean*.

Group Serum IgG BALF IgG BALF IgA

MN08 Ag pH1N1 Ag MN08 Ag pH1N1 Ag MN08 Ag pH1N1 Ag

Vx/Ch 24,300 ± 1200a 18,400 ± 1200a 168.9 ± 1.3a 294.1 ± 1.2a 48.5 ± 35.8a 39.4 ± 35.6a

NVx/Cha 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0a

NVx/NCh 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0a

* Values within a column not connected by the same letter are significantly different (P ≤ 0.05).
a NVx/Ch antibody responses were less than 2 standard deviations above the mean of NVx/NCh pigs.

Fig. 4. Cytokine levels (pg/ml) in bronchoalveolar lavage fluid at 5 dpi. Error bars represent standard error of the mean. Bars connecting columns designate significant
differences at P < 0.05.

NVx/Ch and NVx/NCh groups did not exhibit detectable IgG anti-
bodies in serum at 0 dpi to either antigen. Geometric mean titers
are reported in Table 5.

3.7. Cytokine analysis

Pigs in the Vx/Ch group had significantly (P ≤ 0.05) higher con-
centrations of IL-8, IL-1#, and IL-6 in the lung on dpi 5 than NVx/ Ch
pigs (Fig. 4). The Vx/Ch group averaged 1776 pg/ml of IL-8 compared
to the NVx/Ch group that averaged 376.5 pg/ml of IL-8 on 5 dpi. IL-
1# levels averaged 100 pg/ml in the Vx/Ch group compared to the
NVx/Ch group that averaged 12 pg/ml. The same was observed for
IL-6, with an average of 171 pg/ml versus 43 pg/ml in the Vx/Ch
and NVx/Ch groups, respectively. Levels of IFN-" in the lung lavage
were not significantly different between the challenge groups and
the NVx/NCh group.

4. Discussion

This study demonstrates enhanced pneumonia in pigs adminis-
tered an inactivated H1N2 SIV vaccine followed by challenge with a
heterologous pH1N1 virus compared to non-vaccinated pigs chal-
lenged with the same virus. A/Sw/MN/02011/08 H1N2 (MN08) was
chosen as vaccine virus to represent the !-cluster of hu-like SIVs
identified in 2005 and currently endemic in North American swine
[10]. Presently, the !-cluster SIVs are the most frequently isolated
swine influenza virus from diagnostic submissions to the Univer-
sity of Minnesota Veterinary Diagnostic Laboratory (M. Gramer,
University of Minnesota Veterinary Diagnostic Laboratory, personal
communication). Pandemic A/CA/04/09 H1N1 (pH1N1) was chosen
as the challenge virus to evaluate the risk pre-existing immunity
against !-cluster SIV vaccines might have on pH1N1 outbreaks
in the pig population. In addition, previous serologic evaluation
of swine influenza virus antiserum demonstrated a lack of cross-
reactivity between the !-cluster SIV anti-serum and pH1N1 in
HI assays, fulfilling one criteria for duplication of the vaccine-
heterologous challenge model used in the study where enhanced
pneumonia was first observed [29]. Since the first US swine out-
break of pH1N1 in October 2009, a number of swine cases have been
reported and pH1N1 may become endemic in the US swine popu-

lation in addition to the previously circulating antigenic variants of
swine-lineage H1N1 and H1N2.

Macroscopic and microscopic pneumonia typical of SIV infec-
tion was demonstrated at 5 dpi in both groups challenged with
pH1N1. However, the Vx/Ch pigs had a significantly greater per-
centage of lung involvement compared to the NVx/Ch pigs in spite
of previous vaccination. In addition, microscopic pneumonia and
tracheal lesion scores were significantly higher in the Vx/Ch pigs
compared to the NVx/Ch group. Experimental inoculation with
SIV induces necrotizing bronchiolitis with peribronchiolar lympho-
cytic cuffing and interstitial pneumonia which can vary in extent
and severity depending on the stage of infection and virulence
of the virus [9,30]. However, in this study, marked differences in
lung lesion profiles between the virus challenge groups were evi-
dent. In addition to the bronchiolar epithelial necrosis, pigs with
enhanced lesions (Vx/Ch) had marked peribronchiolar lympho-
cytic cuffing, subepithelial bronchiolar lymphocytic inflammation
and moderate interstitial pneumonia to an extent not observed
in the NVx/Ch pigs. Interestingly, bronchi, bronchioles and alve-
oli also contained high numbers of neutrophils at 5 dpi atypical
of an uncomplicated viral pneumonia. It is unlikely a secondary
bacterial infection contributed to the suppurative inflammation
considering B. bronchiseptica was isolated from a larger number
of pigs in the NVx/Ch and NVx/NCh control group (8 pigs total)
which did not have enhanced lung lesions or bronchopneumonia,
compared to the Vx/Ch group with B. bronchiseptica (3 pigs). The
increased pro-inflammatory cytokine response in the lungs of the
Vx/Ch pigs, which included elevated IL-8 protein levels, may have
contributed to the suppurative pneumonia in the Vx/Ch pigs due
to the potent neutrophil chemotaxis property of IL-8 [31]. These
data suggest specific differences in severity and distribution of
microscopic lesions may provide distinguishing features between
enhanced pneumonia and uncomplicated infection with SIV useful
to identify such issues in field cases.

The mechanism of the enhanced pneumonia phenomenon has
not been elucidated although consistent features among studies
have been described previously and in this report [19,32]. These
include (1) whole influenza virus antigen administered as a mono-
valent, inactivated vaccine combined with oil-in-water adjuvant;
(2) challenge with a heterologous SIV with a homosubtypic HA
three weeks post booster vaccination; (3) serum HI antibodies to
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the priming antigen that do not cross-react with the challenge
virus; and (4) whole virus, non-HI, non-neutralizing IgG antibod-
ies detected by ELISA in serum and BALF cross-reacting with the
challenge virus.

Inactivated whole-virus influenza vaccines are commonly used
in the US swine industry and most are multivalent with H1 and
H3 subtypes included. Inactivated SIV vaccines are efficacious
against homologous challenge, although limited cross-protection
is demonstrated against heterologous homosubtypic or hetero-
subtypic viruses [15,17–19]. Previous studies by our group have
shown that the use of live attenuated virus may enhance the
efficacy of vaccines against antigenically heterologous viruses of
the same subtype, specifically through the development of cross-
reactive antibodies at the mucosal level [19,33]. Cell-mediated
immune responses, stimulated by live exposure, are also impor-
tant for heterosubtypic immunity and recovery from infection.
One study using immune pigs infected with heterosubtypic SIV
demonstrated elevated CD8+ T cells in the lungs compared to
pigs challenged with homologous virus indicating the importance
of T cells in heterosubtypic immunity [34]. Collectively, these
studies suggest live infection or vaccination with modified live vac-
cines may confer more efficient cross-protection than inactivated
vaccines against divergent influenza viruses due to activation of
both humoral and cell mediated immunity. Additional studies are
needed to understand the differences in the immune response to
inactivated vaccines versus live challenge and how this may affect
cross-protective immune function and the aggravated lung pathol-
ogy demonstrated in pigs in our model.

HI titers (1:40–1:320) and SN titers (1:640–1:10,240) to the
MN08 antigen were demonstrated in vaccinated pigs at 0 dpi (day
of challenge); however, antibody cross-reactive with the pH1N1
antigen was not detected by either HI or SN test. MN08 and pH1N1
are genetically related by H1 subtype, but have only 77% identity
at the nucleotide level between the HA genes. The identity ranged
from 91% to 94% for the polymerase genes and 95% for NP and NS.
The NA genes are of different subtype and thus of low identity.
The M genes also are derived from different source viruses (MN08
North American swine lineage; pH1N1 human influenza A virus
with Eurasian swine-lineage) and thus of low identity as well. The
MN08 virus is a contemporary member of the !-cluster or hu-like
SIVs. In the US, influenza viruses with hu-like HA were first iden-
tified in swine in 2005, all with triple reassortant internal genes
similar to contemporary US swine influenza isolates. The HA and
NA genes were related to recent human seasonal influenza virus
lineages [10]. Influenza viruses related to earlier human seasonal
H1N1 have been identified in pigs in China as well [35], but are dis-
tantly related to North American !-cluster HA and were not shown
to have reassorted with endemic Chinese swine viruses. In con-
trast, the pH1N1 virus, which has an HA similar to the $-cluster H1
SIVs, contains genes from both North American and Eurasian swine
influenza virus lineages with a constellation of the eight gene seg-
ments not known to circulate in swine prior to the emergence of
the pandemic virus. Serologic cross-reactivity with pH1N1 has been
demonstrated in HI tests with sera from pigs immunized with "-,
#-, and $-clusters of H1 SIV but not with !-cluster antisera [29]. The
lack of cross-reactive HI antibodies demonstrated in this study due
to the divergent H1 cluster viruses used as the vaccine antigen and
challenge virus suggests that HI antibodies may play an important
role in preventing enhanced pneumonia.

In contrast to the absence of HI antibodies to pH1N1 in MN08-
primed anti-sera, a whole-virus ELISA detected similar levels of
anti-MN08 and anti-pH1N1 IgG antibodies in serum and BALF
at 0 and 5 dpi, respectively. These data suggest the non-HI anti-
bodies may have contributed to the enhanced macroscopic and
microscopic lung lesions described in this report. Potential roles
for vaccine-induced non-HI IgG antibody could include antibody

dependent cell-mediated cytotoxicity (ADCC), activation of the
classical complement cascade, or antibody dependent enhance-
ment (ADE) through Fc-receptor mediated uptake of virus. Low
avidity antibodies were recently shown to be associated with
antigen–antibody complexes and complement fixation in lungs of
fatal human cases of pH1N1 [36]. Inactivated influenza vaccines
have been shown to induce antibodies reactive in ADCC [37] or
to promote cell-mediated cytotoxicity and complement fixation
[38,39]. Further studies are necessary to understand the role of non-
HI antibodies and the mechanism for the development of enhanced
pneumonia.

In contrast to the presence of whole virus IgG antibodies in BALF
to both antigens, there were either minimal levels of IgA to the
priming antigen or insignificant levels of IgA to the challenge virus
in the respiratory mucosa at 5 dpi in the Vx/Ch pigs. Our results
indicate the anti-MN08 IgA did not cross-react with the challenge
virus. However, it is unknown if the presence of cross-reacting
mucosal IgA, or a more robust response, would have prevented
infection or the enhanced pneumonia in this swine study. A pre-
vious study by our group demonstrated a relative decrease in IgA
and increase in IgG in 3 of 9 pigs with enhanced pneumonia com-
pared to 6 pigs without enhanced lesions providing support for
the potential cross-protective role of IgA antibody [19]. Antibody
mediated immune reactions at the mucosal level, rather than sys-
temic immunity, have been shown to be important for protecting
the respiratory tract from infection with SIV [27]. Therefore, the
potentiation of lung lesions described in this report may have been
due to the insignificant levels of IgA in conjunction with higher
levels of non-neutralizing IgG to the challenge virus.

The study described here suggests that cross-reactive, non-HI
antibodies induced by inactivated vaccines may play a role in the
enhanced pneumonia. However, it remains unclear if antibodies
against specific epitopes on the HA protein are more involved in
the immunopathology than others. Enhanced clinical disease impli-
cating antibody responses to minor immunogenic proteins other
than surface glycoproteins post-challenge with influenza virus has
been reported in vaccinated pigs. A previous study used a DNA vac-
cine expressing an M2 and nucleoprotein (NP) fusion protein to
induce anti-M2 antibodies and influenza-specific T-cell responses
[40]. Interestingly, clinical signs and mortality were more severe
upon challenge with SIV in the vaccinated pigs. The authors specu-
lated that non-neutralizing antibodies to the M2 protein may have
allowed increased viral uptake and expression of surface M2 pro-
tein, promoting cell death through ADCC or complement activation
and T helper cells may have stimulated an exaggerated inflamma-
tory response. Another recent study also suggested an association
between prior human vaccination with the 2008–2009 trivalent
inactivated influenza vaccine (TIV) and increased severity of clinical
illness induced by infection with pandemic influenza A H1N1 [41].
Although cause and effect was not established between vaccination
and illness, the authors concluded that prior vaccination with TIV
may have increased the risk of medically attended pH1N1 illness
in humans. This study demonstrated a potential vaccine-associated
disease enhancement with human implications similar to the sug-
gested outcome in this report. Clinical signs were correlated with
one specific vaccine, implying the manufacturing process may have
played a role in the disease enhancement. However, further studies
are necessary to understand the role vaccine preparation may have
on the clinical outcome to heterologous virus infection.

Swine with existing immunity to influenza virus through
repeated exposure or vaccination with multiple strains may be
partially protected against heterologous challenge, as was previ-
ously shown in vaccinated pigs challenged with pH1N1 virus [42].
However, the simultaneous increase in inactivated SIV vaccine use
and the evolving antigenic diversity of influenza A viruses in swine
creates a realistic potential for vaccine/challenge mismatch. Com-
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mercial vaccines are typically multivalent to enable protection
against exposure to multiple subtypes and antigenically diverse
strains. Manufacturing regulations in the US limit the ability to alter
fully licensed swine influenza vaccines as rapidly as the virus is
changing. Future vaccines that provide adequate protection from
infection and decrease the potential for vaccine-enhanced pneu-
monia will likely need to provide cross-protection at the respiratory
mucosa and activate both the humoral and cell-mediated immune
systems.
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